
Penetration Test Report

Target System: [Red Hat Linux]

Date: [03/04/2025]

Author: [Robert Onuoha]

Contents

1.​ Executive Summary--- 2
2.​ Methodology--- 4
3.​ Technical Summary--- 5
4.​ Assessment Results--- 7
5.​ Risk Evaluation and Recommendations------------------------- 26
6.​ Conclusion--- 26
7.​ Appendix--- 26

1. Executive Summary
This assessment was conducted to evaluate how vulnerable the target system would be to a
real-world cyberattack. The test simulated how an external attacker could attempt to break
into a system used by an organisation. The goal was to determine whether weaknesses

existed that could allow someone outside the organisation to access confidential data or
take control of the system.

The test found several serious weaknesses. These included outdated software that no longer
receives security updates, insecure system settings, and poor password management
practices. A critical issue involved a password being stored in a file where an attacker could
easily find it. This allowed full access to the system, effectively handing over complete
control. Other risks included an unprotected login area that allowed brute-force attacks, and
a web page that let attackers run potentially dangerous scripts or commands.

The impact of these issues, if exploited by a malicious actor, could be severe. The
organisation could face data theft, disruption to operations, reputational damage, or
potential legal consequences due to non-compliance with security regulations. The
vulnerabilities found could be exploited with minimal effort and using publicly available
tools.

Figure 1.1 – Attack Flow Overview: A visual summary showing the key steps taken by the
attacker to compromise the system.

2. Methodology
The scope of this penetration test was limited to a single Linux-based virtual machine
running a custom web application stack. The machine was deployed in a controlled lab
environment with access restricted to the local network. The application was accessible
over HTTP on ports 80 and a range of common services were exposed for interaction and
testing.

The test followed a black box methodology meaning testing was conducted without any
prior credentials, simulating an unauthenticated external attacker. Both unauthenticated
and post-authentication testing were carried out once access was gained via brute-force and

privilege escalation techniques. Tools like SQLMap weren’t used, in accordance with the test
guidelines.

The approach included network reconnaissance, port and service enumeration with nmap,
web application directory and input discovery with dirb, vulnerability scanning with nessus,
and manual testing for common web flaws such as insecure authentication, XSS, SQL
injection, and exposed admin panels with burpsuite. Once access was obtained, the test
moved to local enumeration of the server, including reviewing configuration files, command
histories, and SSH access for signs of weak credentials or misconfigurations.

Where possible, findings were verified with proof-of-concept payloads and supported with
screenshots. The goal of this assessment was to identify exploitable security issues, confirm
their impact, and document potential risks to the system’s confidentiality, integrity, and
availability.

3. Technical Summary

Risk Level Vulnerability Name Description Recommendation

Critical Plaintext Credential
Disclosure

Root password
found stored in a
local plaintext file,
enabling direct SSH
access.

[T1552.001] Remove
all plaintext
password storage
and enforce secure
credential handling
practices.

Critical SSL Version 2 and 3
Protocol Detection

Remote service
accepts SSLv2/3,
vulnerable to
cryptographic flaws.

[T1040] Disable
SSLv2/3 and enforce
TLS 1.2+ with secure
cipher suites.

Critical PHP Unsupported
Version Detection

Outdated PHP
version, no longer
supported, exposed
to unpatched
vulnerabilities.

Apply system
hardening and
[T1203] patch
vulnerable software
to mitigate exploit
exposure.

Critical Admin Panel
Brute-Force
Authentication
Bypass

16 valid credentials
discovered via
Hydra due to lack of
rate limiting or

[T1110.001] Enforce
rate-limiting,
CAPTCHA, and
account lockout.

lockout policies. Monitor for
credential stuffing
activity.

High Reflected XSS in
Login.php

Error parameter
allows script
injection, confirmed
via alert payload.

[T1059.007] Sanitize
user input and
encode output.
Apply CSP to restrict
script execution.

High Exposed SQL
Interface

txtSQL parameter in
admin panel
executes raw SQL;
backend fails due to
missing database.

[T1505.003] Remove
raw query interfaces
or restrict access.
Validate and sanitise
input to prevent
injection.

High PHP < 4.4.3 / 5.1.4
Multiple
Vulnerabilities

Older PHP versions
suffer from buffer
overflows and
memory issues.

[T1203] Upgrade to
PHP 5.1.4 or later to
reduce risk of RCE
and memory
exploits.

High PHP < 4.4.4 Multiple
Vulnerabilities

Known flaws
include unsafe
c-client library
usage and buffer
overflows.

[T1203] Apply
vendor patches and
upgrade to PHP 4.4.4
or later.

High Weak SSH
Configuration

SSH server accepts
deprecated ciphers
and key exchange
methods.

[T1021.004] Harden
sshd_config. Disable
legacy algorithms
and enforce modern
crypto policies.

High SSL RC4 Cipher
Suites Supported

RC4 is broken and
should not be used
in secure
communications.

[T1040] Remove
RC4 support; prefer
AES-GCM or
ChaCha20-Poly1305.

High SSL DROWN Attack
Vulnerability

SSLv2 enabled; may
be susceptible to
cross-protocol
decryption attacks.

[T1040] Disable
SSLv2 and avoid
private key reuse
across protocols.

Medium HTTP TRACE /
TRACK Methods
Allowed

TRACE/ TRACK can
be used in cross-site
tracing attacks.

[T1071.001] Disable
TRACE/TRACK in
web server
configuration to
mitigate

request/response
tampering.

4. Assessment Results

4.1 Key Findings

Network Discovery and Port Scanning

Initial reconnaissance began with netdiscover, which successfully identified the target
machine’s IP address on the local subnet. Verification was performed through inspection of
the ARP table. A comprehensive Nmap scan followed, targeting all ports. This revealed
several open services, notably an Apache web server running on ports 80 and 3148. The
scan output included detailed service banners and supported HTTP methods, which
indicated potential misconfigurations and attack vectors. Additionally, HTTP enumeration
revealed that the server accepted potentially insecure HTTP methods, including TRACE and
TRACK, which may be abused for cross-site tracing or proxy-based attacks.

Figure 1.2 – netdiscover output identifying the target machine’s IP address.

This figure shows the initial host discovery phase. The IP 192.168.191.138 was identified as
the target machine within the local network.

Figure 1.3 – ARP table showing live hosts.

The ARP table confirms the presence of the discovered host and its MAC address, verifying
its activity on the subnet.

Figure 1.4 – Web server index page.

The landing page of the target’s Apache web server is shown here. This confirms a web
service running on port 80 or 3148 and serves as an entry point for HTTP-based
enumeration.

Figure 1.5 – Nmap scan results showing open ports and services.

The Nmap output lists all open TCP ports and service versions on the target machine.
Apache and PHP are identified, guiding later exploitation steps.

Figure 1.6 – HTTP methods supported by the Apache web server.

This scan confirms that insecure methods such as TRACE and TRACK are enabled. These can
be exploited in HTTP-based attacks, including Cross Site Tracing.

Figure 1.7 – Nmap host discovery across subnet.

An Nmap ping sweep reveals active hosts on the local network, helping define the attack
surface and detect potential lateral movement targets.

Vulnerability Scanning with Nessus

A Nessus scan of the target system identified a total of 38 vulnerabilities, with three
classified as critical. Among these, the most notable was support for SSLv2 and SSLv3
protocols, which are deprecated and affected by multiple cryptographic weaknesses.
Furthermore, the target was running an outdated and unsupported version of PHP, making
it susceptible to publicly known exploits that are no longer patched by the vendor. Further
information can be found in the technical summary.

Figure 1.8 – Nessus vulnerability scan summary.

This figure displays the number and severity of vulnerabilities identified on the target
system. Notably, three critical vulnerabilities are highlighted, prompting urgent remediation.

4.2 Exploitation & Post-Exploitation

Directory Enumeration and Web Access Control Weaknesses

Directory enumeration using Dirb and manual browsing revealed multiple exposed
endpoints on the web server. One such endpoint, /Admin/, contained administrative
functionality and file directories accessible without authentication. This interface allowed
access to web assets, uploaded content, and a rudimentary administration dashboard. The
lack of access control measures surrounding this directory exposes the system to
unauthorised content viewing and potential administrative manipulation.

Figure 2.1 – Directory listing of exposed web directories.

This screenshot shows unprotected directories available via the web server. These can leak
sensitive data or provide backend access without authentication.

Figure 2.2 – Admin login page discovered via directory enumeration.

An exposed login form located at /Admin/ is accessible without restrictions. This becomes a
key vector for further attacks.

Figure 2.3 – Exposed admin interface displaying image assets.

This figure confirms full access to image management features through the unauthenticated
admin panel.

Brute-Force Attack on Admin Panel

To assess the resilience of authentication mechanisms, a targeted brute-force attack was
carried out using Hydra against the login page located at /Admin/index.php. The attack
employed a common password wordlist and leveraged HTTP POST requests to test
credential combinations. The attack resulted in the identification of 16 valid credentials,
indicating that the login portal lacked essential protections such as:

-Rate limiting

-CAPTCHA enforcement

-Account lockout policies

This failure to implement basic security controls around authentication introduces a severe
risk of unauthorised access and automated compromise.

Fig 2.4 Hydra was successfully used to brute-force login credentials for the admin user on
the target system (192.168.191.138) by submitting HTTP POST requests to
/Admin/index.php. A total of 16 valid passwords were found, suggesting the login page
lacks rate limiting, CAPTCHA, account lockout, or other protections against automated
attacks.

SQL Injection Testing

Within the exposed admin interface, a form was discovered that accepted raw SQL input.
When the payload ‘ OR 1=1 == was submitted, the server responded with the error
message “Failed to select database”. This behaviour indicates that user input is being
directly concatenated into backend SQL queries without sanitisation or input validation.
Although no database connection was active at the time of testing, the generation of
backend error messages demonstrates that the application is vulnerable to SQL injection.

This finding reveals a critical flaw: the presence of injectable input channels that, if paired
with an active database, could allow an attacker to extract, modify, or delete data.

Figure 2.5 – SQL input form triggering backend error.

The input payload causes a SQL error message to appear, confirming the presence of
unsanitised input and a backend SQL injection vulnerability if a database were to be
connected.

Post-Exploitation Enumeration and Privilege Escalation

After identifying vulnerabilities in the admin interface, further exploration focused on
achieving system-level access. A discovered text file led to the recovery of a Base64-encoded
string, which was used to generate a custom password wordlist. This wordlist enabled a
successful SSH brute-force attack, resulting in full root access to the target machine. With
administrative privileges established, enumeration of command histories and system files
revealed sensitive operational data and confirmed the extent of the compromise.

Figure 2.6 – Text file discovered on the victim machine.

The content suggested hidden or encoded data potentially relevant to credential discovery
or local access.

Decoding the content from Base64 yielded the string “CTEC2903”, a related identifier that
could be contextually significant.

Figure 2.7 – Base64-decoded output revealing the string “CTEC2903”.

The decoded string was hypothesised to be a base for generating targeted password
guesses.

To test this theory, a custom wordlist was generated using the decoded string with various
capitalisation permutations, aiming to improve the likelihood of a successful brute-force
attack.

Figure 2.8 – Custom wordlist generated using capitalised variants of “CTEC2903”.

This wordlist was tailored for targeted brute-forcing based on the decoded keyword.

The generated wordlist was then used with Medusa, a fast and parallel brute-force tool, to
attack the SSH service on the target machine. This resulted in successful authentication,
confirming that one of the permutations matched a valid user password.

Figure 2.9 – Successful SSH brute-force attack using Medusa and the custom wordlist.

This confirmed the password's validity and access to the SSH service.

A remote SSH session was established using the recovered credentials. Upon logging in, the
whoami command confirmed that the current session had root privileges, marking a full
system compromise.

Figure 2.10 – Successful SSH login as root using brute-forced credentials.

The whoami output confirmed full administrative access to the system.

With root-level access achieved, the local environment was enumerated further. The
contents of the home and system directories were listed to identify potential configuration
files, artefacts, or stored credentials.

Figure 2.11 – Listing contents of the current working directory.

This revealed various log and configuration files of interest for further review.

Inspection of the .mysql_history file revealed previously entered MySQL queries, which
could contain database names, user credentials, or operational insights.

Figure 2.12 – Output of .mysql_history revealing previous SQL interactions.

Such logs are often overlooked but may contain exploitable information.

Likewise, the .bash_history file was reviewed to assess prior user activity. During this
inspection, a message stating “You have new mail in /var/spool/mail/root” was displayed,
prompting further investigation.

Figure 2.13 – .bash_history file reveals system usage and a mail alert.

The user’s past terminal activity was exposed, along with a pointer to unread root mail.

Accessing the root user's mail confirmed this notification, unveiling internal communication
that may contain credentials, system warnings, or administrative instructions.

Figure 2.14 – Contents of root user mail located in /var/spool/mail/root.

The email contents can aid in post-exploitation insight or social engineering.

Exploitation of Reflected Cross-Site Scripting (XSS) on Login.php

During testing of the Besure banking interface, the Login.php page was found to be
vulnerable to reflected Cross-Site Scripting (XSS). Specifically, the page accepts a GET
parameter named Error, which is used to display login error messages. This input is
reflected in the HTML response without proper sanitisation or encoding.

Figure 2.15 – Public-facing login form at /Login.php

The login interface includes fields for account number, PIN, and date of birth. Although it
appears secure at first glance, the page accepts external query parameters.

To investigate this behaviour, Burp Suite was used to intercept the HTTP request generated
upon a failed login. The captured request revealed that the Error parameter was used to
communicate failure messages back to the user.

Figure 2.16 – Burpsuite interceptor HTTP request

The login page includes multiple input fields for user authentication, but also accepts a GET
parameter named Error which is reflected back into the page.

To verify the vulnerability, the following payload was injected into the Error parameter:

/Login.php?Error=<script>alert(1)</script>

When the URL was visited, the script executed successfully in the browser, displaying a
JavaScript alert box — confirming a reflected XSS vulnerability.

Figure 2.17 – JavaScript alert(1) triggered by reflected XSS

The application rendered unsanitised input from the Error parameter, allowing arbitrary
script execution. This vulnerability could be exploited by an attacker to perform phishing
attacks, steal session cookies, or hijack user interactions if they are able to convince a victim
to click a malicious link.

5. Risk Evaluation & Recommendations
The most critical vulnerabilities stem from outdated software and misconfigurations that
permit brute-force, SQL injection, and XSS attacks. Immediate priority should be given to:

-Disabling SSLv2/3 and legacy cipher suites to prevent MITM and DROWN-style attacks.

-Upgrading PHP to a maintained version to eliminate dozens of known vulnerabilities.

-Implementing rate limiting, CAPTCHA, and account lockout on all authentication endpoints.

-Disabling the raw SQL query panel or restricting it to authenticated admin users only.

-Applying output encoding and sanitisation for all user-reflected input to prevent XSS.

-Securing sensitive credentials stored in plaintext and removing them from publicly
accessible files.

Long-term, establish a patch management policy, conduct regular configuration audits, and
limit admin panel exposure through access control and network segmentation.

6. Conclusion
The assessment demonstrated that the system is highly vulnerable to external compromise.
Through a combination of poor access controls, outdated software, and exposed
administrative functionality, full root-level access was achieved and complete system
compromise. One significant finding included the retrieval of an SSH root password stored
in plaintext, which enabled remote access without cracking. These vulnerabilities are highly
exploitable using widely known techniques and publicly available tools. Prompt remediation
of identified issues is essential to protect system integrity and confidentiality.

7. Appendix
Tools Used:

-Nmap

-Hydra

-Medusa

-Burp Suite

-Dirb

-Base64

Payloads and Commands:

hydra -l admin -P wordlist.txt 192.168.191.138 http-post-form
"/Admin/index.php:user=^USER^&pass=^PASS^:F=Incorrect"

Login.php?Error=<script>alert(1)</script>

SSH with legacy options:

ssh -oKexAlgorithms=+diffie-hellman-group1-sha1 -oHostKeyAlgorithms=+ssh-rsa
-oPubkeyAcceptedAlgorithms=+ssh-rsa -oCiphers=aes128-cbc root@192.168.191.138

	Penetration Test Report
	Contents
	
	
	
	
	
	
	
	
	1. Executive Summary
	2. Methodology
	3. Technical Summary
	4. Assessment Results
	4.1 Key Findings
	
	
	
	
	
	
	4.2 Exploitation & Post-Exploitation

	
	
	5. Risk Evaluation & Recommendations
	6. Conclusion
	
	
	7. Appendix

