Penetration Test Report

Target System: [Red Hat Linux]
Date: [03/04/2025]

Author: [Robert Onuoha]

Contents

1. Executive Summary--------========mmmm oo 2
2. Methodology-----=--==-=====s=emmmmmm e 4
3. Technical Summary---------========mmmmm oo 5
4. Assessment Results-------------mmmmmmmmmm e 7
5. Risk Evaluation and Recommendations------------------------- 26
6. Conclusion--==-==-==nmmmmmmee e 26
7. AppendiX------------mm oo 26

1. Executive Summary

This assessment was conducted to evaluate how vulnerable the target system would be to a
real-world cyberattack. The test simulated how an external attacker could attempt to break
into a system used by an organisation. The goal was to determine whether weaknesses

existed that could allow someone outside the organisation to access confidential data or
take control of the system.

The test found several serious weaknesses. These included outdated software that no longer
receives security updates, insecure system settings, and poor password management
practices. A critical issue involved a password being stored in a file where an attacker could
easily find it. This allowed full access to the system, effectively handing over complete
control. Other risks included an unprotected login area that allowed brute-force attacks, and
a web page that let attackers run potentially dangerous scripts or commands.

The impact of these issues, if exploited by a malicious actor, could be severe. The
organisation could face data theft, disruption to operations, reputational damage, or
potential legal consequences due to non-compliance with security regulations. The
vulnerabilities found could be exploited with minimal effort and using publicly available
tools.

Host discovery
(netdiscover)

h 4 Y Y

Port and service Credential discovered . '
scanning iplaintext password in ‘-"Uln'ErarEJelalgguE:Ecannlng
(nmap) file) (!
¥ ¥
Web enumeration Generated E'.rnrdlis_t
(dirb) based on plaintext file
¥ v
XS5 and SQLI testing S5H password
(burpsuite) cracked
(medusa)

h J ¥

Bruteforce admin
login
(hydra)

Gained root access to
system

¥
File exfiltration

(MySQL history, bash
history secret

communications etc)

Figure 1.1 - Attack Flow Overview: A visual summary showing the key steps taken by the
attacker to compromise the system.

2. Methodology

The scope of this penetration test was limited to a single Linux-based virtual machine
running a custom web application stack. The machine was deployed in a controlled lab
environment with access restricted to the local network. The application was accessible
over HTTP on ports 80 and a range of common services were exposed for interaction and
testing.

The test followed a black box methodology meaning testing was conducted without any
prior credentials, simulating an unauthenticated external attacker. Both unauthenticated
and post-authentication testing were carried out once access was gained via brute-force and

privilege escalation techniques. Tools like SQLMap weren’t used, in accordance with the test
guidelines.

The approach included network reconnaissance, port and service enumeration with nmap,
web application directory and input discovery with dirb, vulnerability scanning with nessus,
and manual testing for common web flaws such as insecure authentication, XSS, SQL
injection, and exposed admin panels with burpsuite. Once access was obtained, the test
moved to local enumeration of the server, including reviewing configuration files, command
histories, and SSH access for signs of weak credentials or misconfigurations.

Where possible, findings were verified with proof-of-concept payloads and supported with
screenshots. The goal of this assessment was to identify exploitable security issues, confirm

their impact, and document potential risks to the system’s confidentiality, integrity, and

availability.

3. Technical Summary

Risk Level Vulnerability Name | Description Recommendation
Critical Plaintext Credential | Root password [T1552.001] Remove
Disclosure found stored in a all plaintext
local plaintext file, password storage
enabling direct SSH | and enforce secure
access. credential handling
practices.
Critical SSL Version 2 and 3 | Remote service [T1040] Disable
Protocol Detection accepts SSLv2/3, SSLv2/3 and enforce
vulnerable to TLS 1.2+ with secure
cryptographic flaws. | cipher suites.
Critical PHP Unsupported Outdated PHP Apply system
Version Detection version, no longer hardening and
supported, exposed | [T1203] patch
to unpatched vulnerable software
vulnerabilities. to mitigate exploit
exposure.
Critical Admin Panel 16 valid credentials | [T1110.001] Enforce
Brute-Force discovered via rate-limiting,
Authentication Hydra due to lack of | CAPTCHA, and
Bypass rate limiting or account lockout.

lockout policies.

Monitor for
credential stuffing
activity.

Reflected XSS in Error parameter [T1059.007] Sanitize
Login.php allows script user input and
injection, confirmed | encode output.
via alert payload. Apply CSP to restrict
script execution.
Exposed SQL txtSQL parameter in | [T1505.003] Remove
Interface admin panel raw query interfaces

executes raw SQL;
backend fails due to
missing database.

or restrict access.
Validate and sanitise
input to prevent
injection.

PHP < 4.4.3 /5.1.4

Older PHP versions

[T1203] Upgrade to

Multiple suffer from buffer PHP 5.1.4 or later to
Vulnerabilities overflows and reduce risk of RCE
memory issues. and memory
exploits.
PHP < 4.4.4 Multiple | Known flaws [T1203] Apply
Vulnerabilities include unsafe vendor patches and
c-client library upgrade to PHP 4.4.4
usage and buffer or later.
overflows.
Weak SSH SSH server accepts [T1021.004] Harden
Configuration deprecated ciphers | sshd_config. Disable
and key exchange legacy algorithms
methods. and enforce modern
crypto policies.
SSL RC4 Cipher RC4 is broken and [T1040] Remove
Suites Supported should not be used RC4 support; prefer
in secure AES-GCM or
communications. ChaCha20-Poly1305.
SSL DROWN Attack | SSLv2 enabled; may | [T1040] Disable
Vulnerability be susceptible to SSLv2 and avoid
cross-protocol private key reuse
decryption attacks. | across protocols.
HTTP TRACE / TRACE/ TRACK can |[T1071.001] Disable
TRACK Methods be used in cross-site | TRACE/TRACK in
Allowed tracing attacks. web server

configuration to
mitigate

request/response
tampering.

4. Assessment Results

4.1 Key Findings

Network Discovery and Port Scanning

Initial reconnaissance began with netdiscover, which successfully identified the target
machine’s IP address on the local subnet. Verification was performed through inspection of
the ARP table. A comprehensive Nmap scan followed, targeting all ports. This revealed
several open services, notably an Apache web server running on ports 80 and 3148. The
scan output included detailed service banners and supported HTTP methods, which
indicated potential misconfigurations and attack vectors. Additionally, HTTP enumeration
revealed that the server accepted potentially insecure HTTP methods, including TRACE and
TRACK, which may be abused for cross-site tracing or proxy-based attacks.

L}

File Actions Edit View Help

Figure 1.2 - netdiscover output identifying the target machine’s [P address.

This figure shows the initial host discovery phase. The IP 192.168.191.138 was identified as
the target machine within the local network.

File Actions Edit View Help

Currently scanning: 17
11 Captured ARP Reg

IP e s

.168 : b |

Figure 1.3 - ARP table showing live hosts.

The ARP table confirms the presence of the discovered host and its MAC address, verifying
its activity on the subnet.

Loans

Mortgages. S A
Insurance '
Personal Inte \
n i 5
[l Your chance to WIN designer
Business Banking Il clothes vouchers...
Business accounts " 4
Thialies) Open up a new on-line saver account
Finance and borrowing and be entered automatically into our
e
besafe! Apply for our latest)
- Gold on-line card offer, =
Internet secun et o) —_Appry now i
elp.
Transfer your balance from
o L your existing credit card and -
S sotma - S cten S receive 12 months at 0%!
more information

Legal information | Accessibilty | About besure | Site map

Figure 1.4 - Web server index page.

The landing page of the target’s Apache web server is shown here. This confirms a web
service running on port 80 or 3148 and serves as an entry point for HTTP-based
enumeration.

sudo] password for
. ti Nmap 7.94!
N scan report
Host is up (
Not shown:

PORT
22/tcp & 3.5pl1 (protocol 1.99)

80/tcp = .48 ((Red Hat Linux))
111/tcp
tcp o ssl/http Red Hat Linux))
B6,/tcp mysqgl MySqL (unautho
2768/tcp open pR24
MAC Address: 00:

Service detection performed. Pleas eport any 1ncor t results at https: map.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 16.87

Figure 1.5 - Nmap scan results showing open ports and services.

The Nmap output lists all open TCP ports and service versions on the target machine.
Apache and PHP are identified, guiding later exploitation steps.

1t http-methods
107 EDT

n repor

up (@.0007

GET HEAD POST OPTIONS TRACE
risky methods: TRACE
open rpe
cp open https
http-methods:
Supported Methods: GET HEAD POST OPTIONS T
Potentially risky methods: TRACE
open mysqgl
filenet-tms
29:F7:C2:03 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 8.29 seconds

Figure 1.6 - HTTP methods supported by the Apache web server.

This scan confirms that insecure methods such as TRACE and TRACK are enabled. These can
be exploited in HTTP-based attacks, including Cross Site Tracing.

open

open

1 open

D open

1 open

1 open

D open
ddress:

msm
zephyr-clt
eklogi

oo

Nmap :
Host (
closed tcp ports (reset)
RVICE

6:FA:BF:1C (VMware)
n report for 192.1

: up (@.8812s later
Not shown:

191.138

STATE ¢

open

open

open

open

open

D open

MAC Address: @0:0C

rpchind
https
N
filenet-

0:F7:C2:03 (VMware)

up (0.0004
1800 scanned por on
shown: 1000 filtered
Address: @@:50:56:F2:04

All
Not
MAC

(no-res
Wware)

ALl 1000
Mot sho

Figure 1.7 - Nmap host discovery across subnet.

An Nmap ping sweep reveals active hosts on the local network, helping define the attack

ignored states.

ignored s

o

surface and detect potential lateral movement targets.

Vulnerability Scanning with Nessus

A Nessus scan of the target system identified a total of 38 vulnerabilities, with three
classified as critical. Among these, the most notable was support for SSLv2 and SSLv3
protocols, which are deprecated and affected by multiple cryptographic weaknesses.
Furthermore, the target was running an outdated and unsupported version of PHP, making
it susceptible to publicly known exploits that are no longer patched by the vendor. Further
information can be found in the technical summary.

(/197 168 19
(/192.168.19 Configure AuditTrall | Plugin

Vulnerabilities 38
Filter = Q 38 Vulnerabilities
sevy VPR v EPSSvy Namea Family & Count v Host Details
CRITICAL 9.8 55L Version 2 and 3 Protocol Detection
MIED . . Bl PHP (Multiple Issues CGl abuses
k Vulnerability (Decrypti Obsolete and Weak Ncryption) Misc.
MIXED

SSL (Multiple Issues) General

MIED

[=]
MIXED Multiple Issues) General
a

IETF Md5 (Multipl General 2 9 e Vulnerabilities
TLS n 1.0 Protocol D
OpenSSL SSL_OP_NETSCA IPHER_CHANGE_BUG Session Resume Ciphersuite Downg...
MIXED i HTTP (Multiple Issues)
MIKED - - (Multiple Issues) Misc

MIXED - - S (Multiple Issues) General

Figure 1.8 - Nessus vulnerability scan summary.

This figure displays the number and severity of vulnerabilities identified on the target
system. Notably, three critical vulnerabilities are highlighted, prompting urgent remediation.

4.2 Exploitation & Post-Exploitation

Directory Enumeration and Web Access Control Weaknesses

Directory enumeration using Dirb and manual browsing revealed multiple exposed
endpoints on the web server. One such endpoint, /Admin/, contained administrative
functionality and file directories accessible without authentication. This interface allowed
access to web assets, uploaded content, and a rudimentary administration dashboard. The
lack of access control measures surrounding this directory exposes the system to
unauthorised content viewing and potential administrative manipulation.

91.138 Jfusr/share/wordlists/dirb/common.txt

'common. txt

GEMERATED WORDS: 4612

—— Scann
= DIRECTOR
+ ht f

END_TIME: Wed Apr 2 B7:16

Figure 2.1 - Directory listing of exposed web directories.

This screenshot shows unprotected directories available via the web server. These can leak
sensitive data or provide backend access without authentication.

€« > C @

KaliLinux g8 Kali T

go
Contact us Content
Securt
Helpluser guide
To direct input to this VM, move the mouse pointer inside or press CtrlsG. [ECEN r

Figure 2.2 - Admin login page discovered via directory enumeration.

An exposed login form located at /Admin/ is accessible without restrictions. This becomes a
key vector for further attacks.

= C @

KaliLinux g Kali Tools @ Kali z ms o Kali NetHunter % Exploit-DB % G cking DB ¢ OffSec

Index of /Admin/Images

Nane Last modified

iption

arent Directory

18-Feb-2017 20:53 760
18-Feb-2017 20:53 761
18-Feb-2017 20:53 607
18-Feb-2017 20:53 341
18-Feb-2017 20:53 855
18-Feb-2017 20:53 856
18-Feb-2017 20:53 685
18-Feb-2017 20:53 688

security_over.gif

Apache/2.0.40 Server at BESURE-LINUX Port 80

Figure 2.3 - Exposed admin interface displaying image assets.

This figure confirms full access to image management features through the unauthenticated
admin panel.

Brute-Force Attack on Admin Panel

To assess the resilience of authentication mechanisms, a targeted brute-force attack was
carried out using Hydra against the login page located at /Admin/index.php. The attack
employed a common password wordlist and leveraged HTTP POST requests to test
credential combinations. The attack resulted in the identification of 16 valid credentials,
indicating that the login portal lacked essential protections such as:

-Rate limiting
-CAPTCHA enforcement
-Account lockout policies

This failure to implement basic security controls around authentication introduces a severe
risk of unauthorised access and automated compromise.

admin -F fusr/share/wordlists/rockyou.txt 192.1 e 1ittp-post-form "/Admin/i
Hydra v9.5 (c) 2023 by van Ha £ se do not use in military or secret

Hydra (

525 tr
Incorrect pa

1[http-p
1[http-p
1[http-p
1lhttp-p
1lhttp-p
1[http-p
1lhttp-p
1[http-p
pa
found
d at 2025-04-02 B7:2

Fig 2.4 Hydra was successfully used to brute-force login credentials for the admin user on
the target system (192.168.191.138) by submitting HTTP POST requests to
/Admin/index.php. A total of 16 valid passwords were found, suggesting the login page
lacks rate limiting, CAPTCHA, account lockout, or other protections against automated
attacks.

SQL Injection Testing

Within the exposed admin interface, a form was discovered that accepted raw SQL input.
When the payload ‘OR 1=1 == was submitted, the server responded with the error
message “Failed to select database”. This behaviour indicates that user input is being
directly concatenated into backend SQL queries without sanitisation or input validation.
Although no database connection was active at the time of testing, the generation of
backend error messages demonstrates that the application is vulnerable to SQL injection.

This finding reveals a critical flaw: the presence of injectable input channels that, if paired
with an active database, could allow an attacker to extract, modify, or delete data.

8.191.138

Kali Linux # Kali Tools « KaliDocs ¥ KaliForums e\ Kali NetHunter Exploit-DB Google Hacking DB OffSec

SQL practice

Enter and SQL statement into the box below to return the desired results from the database:
" OR 1=1 ==

EN

| Execute SAL statement |

Failed to select database

Figure 2.5 - SQL input form triggering backend error.

The input payload causes a SQL error message to appear, confirming the presence of
unsanitised input and a backend SQL injection vulnerability if a database were to be
connected.

Post-Exploitation Enumeration and Privilege Escalation

After identifying vulnerabilities in the admin interface, further exploration focused on
achieving system-level access. A discovered text file led to the recovery of a Base64-encoded
string, which was used to generate a custom password wordlist. This wordlist enabled a
successful SSH brute-force attack, resulting in full root access to the target machine. With
administrative privileges established, enumeration of command histories and system files
revealed sensitive operational data and confirmed the extent of the compromise.

Name Size Packed Type Modified CRC32
" File folder
CSEC2003_2425 ... 1,964779,7.. 613,784,968 File folder 28/02/2025 15:31

| todo.txt 134 124 Text Document 28/02/202515:50 0ODDEOTS

Figure 2.6 - Text file discovered on the victim machine.

The content suggested hidden or encoded data potentially relevant to credential discovery
or local access.

Decoding the content from Base64 yielded the string “CTEC2903”, a related identifier that
could be contextually significant.

Decode from Base64 format
Simply enter your data then push the decode button.

UGV0ZSwgYWZ07X1geW91IHVwbGIhZCB0aGUgdmlydHVhbCBtYWMNoaWSIIHRvIHRoZSBzaGVshCBm
b3lgQ1RFQzISMDMsIHJIBWVEY mVyIHRvIGRIbGV0ZSB0aGlzIGEvdGUu

@ For encoded binaries (like images, documents, etc.) use the file upload form a little further down on this page.
UTF-& w Source character set.
Decode each line separately (useful for when you have multiple entries).

@ Live mode OFF Decodes in real-time as you type or paste (supports only the UTF-8 character set).

L] =(olaln| DA Decodes your data into the area below.

Pete, after you upload the virtual machine to the shell for CTEC2903, remember to delete this note.

Figure 2.7 - Base64-decoded output revealing the string “CTEC2903".

The decoded string was hypothesised to be a base for generating targeted password
guesses.

To test this theory, a custom wordlist was generated using the decoded string with various
capitalisation permutations, aiming to improve the likelihood of a successful brute-force
attack.

kali@ kali: ~

File Actions Edit View Help

903
cTeC2983
CTeC2983
CtEC2963
CtEC2903
CcTEC2983

cTEC2903]]

Bl Execute
BB Justify

Figure 2.8 - Custom wordlist generated using capitalised variants of “CTEC2903".

This wordlist was tailored for targeted brute-forcing based on the decoded keyword.

The generated wordlist was then used with Medusa, a fast and parallel brute-force tool, to
attack the SSH service on the target machine. This resulted in successful authentication,
confirming that one of the permutations matched a valid user password.

B4-02 19:09:27 ACCOUNT CHECK: t: 192.168.191.138 (1 of 1, @
(1 of 16 comple
root

Figure 2.9 - Successful SSH brute-force attack using Medusa and the custom wordlist.

This confirmed the password's validity and access to the SSH service.

A remote SSH session was established using the recovered credentials. Upon logging in, the
whoami command confirmed that the current session had root privileges, marking a full
system compromise.

print])? yes
list of known hosts

unknown

unk

[roo

root

[root@BESURE-Redhat root Bt [

Figure 2.10 - Successful SSH login as root using brute-forced credentials.
The whoami output confirmed full administrative access to the system.

With root-level access achieved, the local environment was enumerated further. The
contents of the home and system directories were listed to identify potential configuration
files, artefacts, or stored credentials.

File Actions Edit View Help

s -al

17 root root 4096
19 root root 4@9
1 root root
root
root
root
root
root
root
root
root
) root
root
root
root
root
root
root
root
} root
root
root
3 root
root
root
root
root
root
root
root

5]

[+ I ¥

5]

kde

.mcop
.metacity
.mozilla
.mysgl_history

wm o

5]

TOETTETETET T OCTTETOoOETTTTETTEET
(&, I} :

Figure 2.11 - Listing contents of the current working directory.
This revealed various log and configuration files of interest for further review.

Inspection of the .mysql_history file revealed previously entered MySQL queries, which
could contain database names, user credentials, or operational insights.

cat .mysql_history
fediTE
% I R 28 " .dir"
Typel”™ @ 1157718287 ".dir"

SET PASSW
rootalo

SET PAS

use mysqgl
show tables

EIT * FPDM user;
password FROM user;

{0 T O e TR

— r— n

o
_|
=
i
1+
=

=

=

— M
m
(=2
—I 1t}
(]
*> =
™
M
= L
[ome
=
(s

[I W I |
(s
[T T I 1]

(s

LECT * FROM
how databases;
ORD FORM root@localhost OLD_PAS
WORD FOR root@mlocalhost = OLD_PAS
152 besure;

OO T R O O Y 5 |

Lf

SE
=
SE
ELEIT * FPDM:
SE
.
E
=

-

Figure 2.12 - Output of .mysql_history revealing previous SQL interactions.
Such logs are often overlooked but may contain exploitable information.

Likewise, the .bash_history file was reviewed to assess prior user activity. During this
inspection, a message stating “You have new mail in /var/spool/mail /root” was displayed,
prompting further investigation.

[root@BESURE-Redhat root H
poweroff

locate database

locate data

locate data | ore

locate data fvaj v /html/data. txt
poweroff

locate mysgl

locate mysql | more

exit

You have new mail im /var/spool/mail/root

Figure 2.13 - .bash_history file reveals system usage and a mail alert.
The user’s past terminal activity was exposed, along with a pointer to unread root mail.

Accessing the root user's mail confirmed this notification, unveiling internal communication
that may contain credentials, system warnings, or administrative instructions.

[root@BESURE-Redhat root m :a

[root@BESURE-Redhat xoot}n ca

From rootal host.localdomain Mon Sep 11 18:18:09 2006

Return-Path: <root@localhost.localdomain:

Received: from localhost.localdomain (BESURE-Redhat [127.8.8.1])
by localhost.localdomain (8.12.8/8.12.8) with ESMTP id kBB9I8bVE02421
for <root@localhost.localdomain>; Mon, 11 Sep 2006 10:18:09 +0100

Received: (from rootml !
by localhost. 1Dca1dom41n (8.12.8/8.12 .8/Submit) id k8E9IBhfEG2418
for root; Monm, 11 Sep 2006 190:18:88 +2109@

Date: Mon, 11 Sep 2006 18:18:08 +@010@

From: root ‘IDDt :

Message-Id:

To: rnctﬁ]uci1h0:t 10ca1dom n

Subject: LogWatch for besure-redhat

LogWatch 4.3.
Processing Initiated: Mon
Date Range Processed:
Detail 1 of Output:
Logfiles for Host: b

Cron Begin

skl inmatched Entries*x
p 8 11:11 BESURE-Redhat crond[1682]: (CRON) STARTUP (fork ok)
Sep 8 11:20:37 BESURE-Redhat crond[1679]: (CRON) STARTUP (fork ok)

Figure 2.14 - Contents of root user mail located in /var/spool/mail/root.

The email contents can aid in post-exploitation insight or social engineering.

Exploitation of Reflected Cross-Site Scripting (XSS) on Login.php

During testing of the Besure banking interface, the Login.php page was found to be
vulnerable to reflected Cross-Site Scripting (XSS). Specifically, the page accepts a GET
parameter named Error, which is used to display login error messages. This input is
reflected in the HTML response without proper sanitisation or encoding.

Besure:: The world's safe internet bank — Mozilla Firefox

b sure The world’s safe internet bank | |
go:-

Banking PRASSERER yoiil e BESURE ACCOUNT NUMBER below:

Bank statements
Apply for overdrafts

Savings and investments Please enter your ONLINE BANKING PIN NUMBER:
Credit cards note: This is not the same as your cash card PIN number

Mortgages |

TS Please enter your DATE OF BIRTH:

e.g. 010975 (DDMMYY)

| Login to Besure |

Figure 2.15 - Public-facing login form at /Login.php

The login interface includes fields for account number, PIN, and date of birth. Although it
appears secure at first glance, the page accepts external query parameters.

To investigate this behaviour, Burp Suite was used to intercept the HTTP request generated
upon a failed login. The captured request revealed that the Error parameter was used to
communicate failure messages back to the user.

Request
Pretty Raw Hex

GET /Login. php?Error=Details%20incorrect, %20l ogins20failed. HTTPS1.1

Host: www. besurebank. com

User-Agent: Mozilla/sS. 0 (X11; Linux x86_&4; rv:128.0) Gecko/ /20100101 Firefoxs128.0
Accept: text/html, application/xhtml+xml, application/xml; ce@. 9 */% =0, 8

Accept -Language: en-US, en; 0. 5

Accept -Encoding: gzip, deflate, br

Referer: http: /7152, 168. 191. 1387

Connection: keesp-alive

00 =] @ W b Wkl

Figure 2.16 - Burpsuite interceptor HTTP request

The login page includes multiple input fields for user authentication, but also accepts a GET
parameter named Error which is reflected back into the page.

To verify the vulnerability, the following payload was injected into the Error parameter:
/Login.php?Error=<script>alert(1)</script>

When the URL was visited, the script executed successfully in the browser, displaying a
JavaScript alert box — confirming a reflected XSS vulnerability.

« @

KaliLinux # KaliTools = KaliDocs & KaliForums e Kali NetHunter Exploit-DB Google Hacking DB

@ 192.168.191.138

1

Figure 2.17 - JavaScript alert(1) triggered by reflected XSS

The application rendered unsanitised input from the Error parameter, allowing arbitrary
script execution. This vulnerability could be exploited by an attacker to perform phishing
attacks, steal session cookies, or hijack user interactions if they are able to convince a victim
to click a malicious link.

5. Risk Evaluation & Recommendations

The most critical vulnerabilities stem from outdated software and misconfigurations that
permit brute-force, SQL injection, and XSS attacks. Immediate priority should be given to:

-Disabling SSLv2/3 and legacy cipher suites to prevent MITM and DROWN-style attacks.
-Upgrading PHP to a maintained version to eliminate dozens of known vulnerabilities.
-Implementing rate limiting, CAPTCHA, and account lockout on all authentication endpoints.
-Disabling the raw SQL query panel or restricting it to authenticated admin users only.
-Applying output encoding and sanitisation for all user-reflected input to prevent XSS.

-Securing sensitive credentials stored in plaintext and removing them from publicly
accessible files.

Long-term, establish a patch management policy, conduct regular configuration audits, and
limit admin panel exposure through access control and network segmentation.

6. Conclusion

The assessment demonstrated that the system is highly vulnerable to external compromise.
Through a combination of poor access controls, outdated software, and exposed
administrative functionality, full root-level access was achieved and complete system
compromise. One significant finding included the retrieval of an SSH root password stored
in plaintext, which enabled remote access without cracking. These vulnerabilities are highly
exploitable using widely known techniques and publicly available tools. Prompt remediation
of identified issues is essential to protect system integrity and confidentiality.

7. Appendix
Tools Used:

-Nmap
-Hydra
-Medusa
-Burp Suite
-Dirb
-Base64

Payloads and Commands:

hydra -1 admin -P wordlist.txt 192.168.191.138 http-post-form
"/Admin/index.php:user="USER"&pass="PASS”":F=Incorrect"

Login.php?Error=<script>alert(1)</script>

SSH with legacy options:

ssh -oKexAlgorithms=+diffie-hellman-group1-shal -oHostKeyAlgorithms=+ssh-rsa
-oPubkeyAcceptedAlgorithms=+ssh-rsa -oCiphers=aes128-cbc root@192.168.191.138

	Penetration Test Report
	Contents
	
	
	
	
	
	
	
	
	1. Executive Summary
	2. Methodology
	3. Technical Summary
	4. Assessment Results
	4.1 Key Findings
	
	
	
	
	
	
	4.2 Exploitation & Post-Exploitation

	
	
	5. Risk Evaluation & Recommendations
	6. Conclusion
	
	
	7. Appendix

